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A B S T R A C T

Evaluating risks through numbers-although an inevitable stage of risk management-can be seriously proble-
matic, especially when marginalized groups of risks turn out to be significant, for example, to the lives of people.
While it questions the effectiveness of the traditional approach to risk scoring, the literature provides no al-
ternative satisfying all the criteria stressed by the critics. In fact, different dimensions of uncertainty, along
which a risk can be viewed, entail different quantifications. Most previous work, however, concentrates on
supposedly all-purpose solutions that are often justified or promoted over others by reasons not necessarily
applicable; little information is available on how to best select the needed scoring approach. This research
investigates the issues involved in constructing a risk factor formula that is more consistent with the nature of the
project and its goals. Major concerns addressed in the literature are organized, serving as a basis to evaluate and
improve seven groups of alternative formulas in light of mathematical arguments without which fallacious
conclusions-such as the myth that importance is implied by exponents greater than one-would be inferred. These
groups are complemented by a multifaceted approach introduced for the first time in this paper, providing the
observer with customized information about risks. A robust scoring system founded on these results will ensure
that allocated risk factors are neither too high nor too low. Although expressed in the terminology of con-
struction safety, the findings of this research can be extended to other industries that feature some element of
uncertainty.

1. Introduction

It is the attitude of an organization toward uncertainty that de-
termines how it will overcome potential failures. Improper treatment of
uncertainty results in defective risk assessments and, thus, faulty deci-
sions (Zio and Aven, 2013). Exemplary disasters that resulted from
perceived but underrated risks can be found in the history of en-
gineering, the analysis of which reveals a fundamental mis-
understanding of different aspects of uncertainty.

Although it can be quite unrealistic in the absence of accurate in-
formation (Ale et al., 2015; Zio and Aven, 2013), a proper quantifica-
tion of uncertainty is essential for the comprehension, description, and
communication of the risks associated with a system under considera-
tion, and how they change over time and after intervention
(Apostolakis, 2004; Duijm, 2015; Mackenzie, 2014).

To many of those involved in risk management and research, the
quantification process is driven by the relative seriousness of risks

(Fine, 1971), expressed as an index or factor which has attracted at-
tentions in recent years even more than what has been paid to the
analyzed risks (Mackenzie, 2014), because it is the only way to identify
priority risks (Groso et al., 2012).

Summarizing available information into a single number is indeed a
difficult and sensitive issue (Mackenzie, 2014), which requires an
analyst to carefully select and utilize constituent elements and algebraic
operations (Azadeh-Fard et al., 2015; Ni et al., 2010). While nearly all
the improvements or alternatives available to the traditional risk
scoring formula have taken a ‘one size fits all’ approach, items such as
the cause of uncertainty, properties of available information, and de-
tails required by the observer can determine which mathematical ex-
pression is best suited for a risk assessment tool (Groso et al., 2012;
Zimmermann, 2000).

A widespread belief that risk is nothing more than the “expected
loss” summarized by averaging the “probability” of events times their
corresponding “impacts” can falsely relieve the effort required to
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manage unbearable risks which are, although low in the product of
their probability and impact, high in other remarkable contents of
uncertainty. Even though this traditional method of risk scoring looks
simple and produces consistent results, a number of flaws identified in
the literature suggest that its use should be revised (Bowles, 2003). The
literature is, however, replete with both incautious uses and sharp
criticisms of the product formula with no established criteria for de-
termining when it is appropriate to be used. Shortcomings of the pro-
duct formula are endlessly enumerated in the papers presenting new
approaches which themselves suffer from the same problems.

The appropriateness of a risk scoring technique is usually examined
from two perspectives: whether special contents of interest are ad-
dressed or not, and whether an acceptable distinction between im-
portant and unimportant risks is provided. The traditional two-dimen-
sional risk calculation method is perhaps not capable of including
parameters such as manageability, criticality, worsening factors, social
amplification, voluntariness, dread, and familiarity (Ale et al., 2015;
Derby and Keeney, 1981; Duijm, 2015; Groso et al., 2012; Kasperson
et al., 1988; Zeng et al., 2007), and the traditional approach to com-
bining the selected factors into a single factor, which uses the multi-
plication operator, is likely to produce unreliable results (Bowles, 2003;
Duijm, 2015; Kaplan et al., 1981; Seyed-Hosseini et al., 2006; Williams,
1996).

This paper attempts to explain why and on what grounds the tra-
ditional method is continuously undermined, and how it can be im-
proved or replaced. A large number of articles, including both original
research and reviews, along with their references and the articles re-
ferring to them have been studied to illuminate the fundamental con-
cerns of the critics. Not all criticisms are found to be based on accurate
and relevant assumptions, nor do they apply to all types of risk scoring
formulas. Major concerns addressed in the literature are first discussed,
and summarized in six points detailed in Section 2. Amendments are
also made, as appropriate. New approaches to risk scoring are then
sought in the literature and assessed with respect to these points. These
are introduced in Section 3 referring only to the oldest or most famous
works that have implemented the suggested approach. A few ap-
proaches that have been found defeating their purpose are further
scrutinized in the light of mathematical theories and examples. In
Section 4, a completely new approach to risk scoring is presented.
Comparing the attributes of different approaches introduced, a discus-
sion is provided in Section 5 to clarify where to use each approach, and
is further supplemented by a few case examples in Section 6. The results
are then concluded in Section 7.

2. Concerns addressed in the literature

Rather than giving an overview of different approaches to risk
scoring, this section first presents the major concerns addressed in the
literature with the traditional risk scoring method, such that a sub-
sequent overview of alternative approaches can adopt these concerns
as a basis for assessment.

2.1. Dissimilarity

A most important and widely recognized drawback of risk scoring
systems is the possibility of assigning similar Risk Factors (RFs) to
naturally different risks. In this regard, critiques frequently found in the
literature are categorized as the following (Ale et al., 2015; Bowles,
2003; Derby and Keeney, 1981; Duijm, 2015; Kaplan et al., 1981;
Williams, 1996):

1. It is difficult to decide how to treat a risk based on a single RF, given
that it provides no information about possible contributing factors.
For example, if it results from the product of four and five, an RF of
20 only needs to be regularly monitored, but when the factors are
ten and two, the higher factor should be reduced to a safer level

while the lower one probably requires no action. When there are
three factors multiplied together, the number 36, for example, is
obtained from five different combinations: {(4,3,3),(6,3,2),(6,6,1),
(9,2,2),(9,4,1)}, none of which is to be treated like the others.

2. Combining multiple factors into one takes no notice of their in-
equalities, i.e., the RF does not indicate whether either the
Probability (P) or the Impact (I) is greater. Therefore, calculated RFs
for a risk with high P and small I might be quite similar to one with
low P and large I. To give an example, a potential threat to the lives
of 100 people with a chance of one in a thousand and an unsafe act
with a ten percent chance of claiming one life, although quite dif-
ferent in nature and features, will be assigned identical RFs. Yet the
former calls for extensive design considerations and contingencies,
while the latter can be eliminated by better education and more
stringent regulations.

3. One can view the only purpose of risk scoring as to compare the
risks, not to provide solutions. However, it is ambiguous even for
someone who wants to compare the risks to see how some chains of
inequalities ( < <RF RF RF1 2 3) show conflicting results. The product
of ×10 2, which implies an extreme case of both parameters, for
example, is bounded between two moderate combinations ×4 4 and

×5 5.
4. A mysterious class of events often referred to as catastrophes result

in such a heavy damage that they are usually expected to be flagged
as important, almost regardless of how infrequent or irregular they
are. Nevertheless, even maximal values of I will be overlooked when
multiplied by a low P, therefore, many guidelines make specific
reference to what they call ‘risk aversion’ or more specifically ‘major
risk aversion’, suggesting that all the risks that are large enough in I
should be manually assigned a high RF before they are multiplied by
P. However, having ignored the fundamental element of un-
certainty, P, this modification can also highlight some nearly im-
possible phenomena that happen rarely, if ever, only because they
might be disastrous. Too much concentration on these unlikely but
catastrophic risks at the expense of devising costly contingency
plans will probably exhaust the resources required for other op-
erations.

These problems, although often attributed to the product formula
( = ×RF factor factor1 2), arise whenever a formula is symmetric on the
variables, i.e. when it uses only ‘commutative’ operators, such as the
product and average formula (Sections 3.1 and 3.2), or when non-
commutative operators are used but interchanging the parameters does
not change the results, as it is in the union-like formula (Section 3.3).
While improvements such as those introduced in Sections 3.7 and 4
make the formula non-symmetric, taking the logarithm of a product
(Section 3.6) is not beneficial in this regard.

2.2. Understandability

Systems are considered internally complicated if they are difficult to
construct, and externally so, if they are difficult to understand
(Ramasesh and Browning, 2014). While it is convenient to use an easy
to calculate risk index such as those introduced in Sections 3.1–3.5,
which may only require a desktop calculator, computer-assisted cal-
culations (Sections 3.7 and 4) can be well worth employing to provide
managers with less complicated and more readily understandable in-
formation.

Less information is not necessarily less complicated. Although re-
sults obtained from a single-output formula are better comparable (Ale
et al., 2015), valuable information may be ignored when combining all
the available data into a single number (Duijm, 2015; Kaplan et al.,
1981; Williams, 1996). A single number gives no idea as to how the
results can be improved, what a certain reduction in RF means, and
whether a risk with an RF of 200, for example, is twice as risky as one
with an RF of 100 (Bowles, 2003; Gilchrist, 1996; Mackenzie, 2014).
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Multiple-output formulas discussed in Section 4 are therefore evolving
to tailor the available information to satisfy the observer’s needs.
However, it cannot be denied that, despite the shortcomings noted in
Section 3.2, most managers are already familiar with the traditional
product formula, and as Mackenzie (2014) states, they must be trained
to trust and react well to a newly proposed formula. Ale et al. (2015)
believe that misunderstanding not only results in misleading inter-
pretations, but also can be disastrous.

2.3. Reasonable sensitivity

When adjusting risk priorities, it is surprising to see how calculated
RFs can be changed by a minor intervention in the contributing factors.
For example, a risk assigned with an RF of 200 out of 1000, can be
reduced to 100 by a one-point reduction in the third factor, if they are
10, 10, and 2. This level of sensitivity can thus make the RF swing
around a predefined Acceptable Risk Level (ARL) just because an expert
is not sure whether to set the third factor to one or two. However, if the
RF of 200 is resulting from the three factors 8, 5, and 5, reducing the
third factor to 4 will only decrease the RF to 160. This means that the
sensitivity of the product formula to each factor is dependent on the size
of other involving factors (Bowles, 2003).

Taking the logarithm of the product formula is often known to be
able to solve the problem (Braband, 2004), although it does so only
partially. As shown in Section 3.6, a logarithmic transformation is more
sensitive to incremental changes when inputs are small than when they
are large. Increasing the input from 1 to 2 (a one-point increase) has an
effect similar to increasing it from 5 to 10 (a five-point increase), since
it is the order of magnitude that counts. In return, the logarithmic
transformation seemingly separates the effect of each factor from any
others and remarkably stabilizes the sensitivity of the formula, as a
single factor can affect the output only to a certain extent quasi-in-
dependent of the value of other involving factors.

2.4. Surjectivity

A number of authors have highlighted the problems of multiple
‘holes’ in the outputs of the traditional product formula. For example, if
either of the two factors contributing to RF is 9 or they are both 10, the
product formula discussed in Section 3.2 gives RFs of 90 or 100, and no
other number between these two is achievable, i.e. there is a 10 point
length hole between 90 and 100. This problem is more evident when
there are three or more factors varying from 1 to 10, and the maximum
possible three numbers are 1000, 900, and 810 separated by two large
holes with the length of 100 and 90. Bowles (2003) views the holes as
the most serious drawback of the product formula, and mentions a few
problems that arise with holes, e.g., it is rather ambiguous to interpret
the hole that appears between 64 and 70, while there is no hole be-
tween 63 and 64.

Despite the common concern with the number or size of the holes,
these holes can be simply reduced when the inputs are obtained from
fuzzy decision systems or averages of multiple expert opinions, which
can take values not limited to integer numbers. Instead, it is the dis-
tribution of results that determines their appropriateness. The size of
the hole between 900 and 1000 is not itself a problem but when com-
pared to that of holes around 100, it reveals that the majority of results
are accumulated at the low-risk end of the distribution (Müller et al.,
2006). While only seven out of 1000 numbers resulting from the pro-
duct of three 0 to 10 integer numbers are greater than 800, as an ex-
ample, 710 numbers (71% of total) are less than or equal to 200. Thus,
the product formula provides too much separation at the high-risk end,
and too much density at the low-risk end of the spectrum.

Different formulas are proposed in the literature to overcome the
problems of holes (see Ouédraogo et al. (2011a) for example) but none
eliminate the presence of holes entirely. In other words, these formulas
are only different in their distribution of results and its characteristics,

such as its skewness, not the presence or absence of holes. The Prob-
ability Density Functions (PDFs) shown in Fig. 1 indicate how the dis-
tribution of results varies in a common range depending on the em-
ployed formula. It is noted in the next section that not all the formulas
introduced in Section 3 produce outputs confined in the range [0,1], but
according to Table 2 (Section 4) they can be modified to have similar
ranges. To give a few examples, the solid (black) curve associated with
the traditional product formula shows a large portion of results gath-
ered in the low-RF zone, which can be slightly moderated by reducing
the exponent of one of the factors to 0.5 shown by the dash dot (brown)
curve. In contrast, the PDFs calculated from the logarithm and union-
like formula are skewed negatively, suggesting that a larger percentage
of risks are flagged high.

2.5. Confinement to a specific range

Numbers confined to a specific range are often better understood
than those able to take unbounded values. Upper bounds are usually
perceived as a measure with which calculated RFs are to be compared.
A risk assigned with an RF of 80 is commonly considered tolerable if it
is out of 1000 and intolerable if out of 100, but it makes little sense if
the upper limit is not defined. Except for the logarithmic transforma-
tion, all the approaches introduced in Section 3 produce bounded
outputs if they are fed with bounded inputs.

It is also of utility to clearly define the range of the function in use.
The multiplication of two numbers between 0 and 10 is perhaps com-
monly acknowledged to range between 0 and 100, but a failure to
notice that raising one of the parameters to the power of 1.5 or 2 ex-
tends the range to [0,316] or [0,1000] reinforces the myth that the
parameter raised to a greater power is receiving more attention, an
issue which is further explored in Section 3.7.

Risk visualization purposes usually require the RF to be expressed
on a 0–1 (or 0–100%) scale, which can be usually obtained by dividing
the RF to its maximum possible value, or according to Mackenzie
(2014), to other values such as the maximum acceptable or desirable
level of risk.

2.6. Monotonicity

Almost every author who defines a new formula to calculate RF
indicates that it is monotone, i.e., increasing a parameter given that all
the other parameters are constant increases the RF (see Braband (2006),
Ouédraogo et al. (2011b), and Duijm (2015)). Except for the ap-
proaches that use ‘division’, such as the efficiency scoring methods
discussed in Section 3.5, all the formulas introduced in Section 3 are
monotonically increasing functions.

3. Possible approaches to risk scoring

Having presented and discussed major concerns in the literature

Fig. 1. The distribution of results obtained from a number of formulas suggested for
calculating RF.
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with the traditional risk scoring method, summarized in six points, this
section presents an overview of alternative approaches to risk scoring
available in the literature, grouped by approach and each group as-
sessed with respect to the previous six points.

3.1. A combination of P and I

The two basic parameters traditionally used to describe a risk -re-
gardless of how they are labeled or measured- typically convey in-
formation about how imminent an event is, and whether it exerts a
dominant effect on the project in the case that it happens. There is
almost no dispute among authors that a risk with both higher P and
larger I has to be ranked higher than one with both lower P and smaller
I. Thus, it can be said that ∝RF P and ∝RF I , which means that RF is
related positively to both P and I. Assuming that P and I are measured in
a ratio scale, possessing equal intervals and a definite zero point (see
Bowles (2003)), arithmetic operations can be performed to reach a
value for RF.

Perhaps the simplest combination to form an RF is the addition
formula (Kaplan et al., 1981), that is = +RF P I , which can be re-
written as the average formula, = +RF P I

2 , to confine RF to the range
[0,1] when P and I are normalized to their maximum value. However,
this formula has not generally been accepted since ‘addends’ need to
share similar characteristics (Ni et al., 2010), and the addition or
average of two numbers implies the sense that they represent two in-
stances of the same concept. The sum of direct and indirect costs of
occupational injuries, for example, meaningfully expresses the total
cost, but it is completely vague to add this number to an environmental
attribute like the concentration of carcinogens in the air, even if they
are all normalized into the same range. Therefore, it is not necessarily
acceptable to combine these two parameters in this way. Moreover, a
risk with a maximum degree of P but zero I, or vice versa, will be al-
located an average RF of 0.5 in this approach, which is not usually
expected to be so.

3.2. Focusing on risks that are both high in P and large in I

The product formula = ×RF P I , which goes back to the 1660s (Ale
et al., 2015) and is the most frequently chosen combination of P and I
(Samson et al., 2009), presupposes that a risk is high if and only if it is
high or large enough in both parameters. Scrutinizing this approach,
one can see the possession of high P or large I as two virtual events,
event P and event I , the probability of which are equal to P and I, and
the intersection of which yields the event of having high risk (see
Fig.2a). The fault tree demonstration of this composition indicates that
the top event ‘risk’ will not occur if any of the sub events are missing
(see Fig. 2b).

This presupposition, however, has been widely criticized for ig-
noring major but rare hazards, which is extensively discussed in Section
2.1 (Dissimilarity). Furthermore, with reference to Probability Theory,
the joint probability of multiple events is equal to the product of their
individual probabilities, if and only if they are mutually independent,

whereas there is no evidence that P and I are always so. Impacts are
often found to be negatively or even positively correlated to their
probabilities, and hence the multiplication of P and I cannot be sup-
ported by Probability Theory.

Not only do these fundamental questions disprove the conjecture
that risk is constructed from the product of P and I, but there are also
arguments against the properties of an index defined in this way.
Neither does it provide a uniform resolution in low to high risk areas
(Surjectivity, Section 2.4), nor does it reflect reasonably to small
changes in inputs (Reasonable sensitivity, Section 2.3). Authors like
Gilchrist (1996), Cooper et al. (2005), Ni et al. (2010), and Duijm
(2015) believe there is no inherent logic to multiply the basic para-
meters P and I, while they suggest that other mathematical operations
might be of better utility. It should be noted however that the product
formula can still be a convenient tool for determining statistical
quantities such as the expected loss.

3.3. A semi-selective approach

In contrast with the highly selective approach presented in the
previous section, i.e., the product formula, Cooper et al. (2005) re-
commend that a risk should be flagged as important if it has either high
P or large I. In this approach, all risks are to be considered high, unless
they are low or small enough in both parameters. Continuing with
virtual events P and I defined in the previous section, one can consider
the state of having low P as event! P with the probability of −P(1 ), and
similarly, the state of having small impact as event ̂I with the prob-
ability of −I(1 ). If events P and ̂I are assumed independent, events !P
and ! ̂I will also be independent, thus the joint probability of having
both low P and small I can be written as − × −P I(1 ) (1 ), and if sub-
tracted from 1, the probability of not having low P nor small I will be
− − × −P I1 (1 ) (1 ) which yields to = + − ×RF P I P I when simplified.
Fig. 3b shows how the top event ‘risk’ occurs if either of the basic events
occurs. This ‘Union-Like’ formula is also capable to address three or
more parameters, say X, Y, and Z, by simplifying the phrase

= − − − −RF X Y Z1 (1 )(1 )(1 ) to = + + − − − +RF X Y Z XY YZ XZ XYZ .
Cooper et al. (2005) believe “it is better to have [listed] too many

risks than too few”, but it may not be the case in a very complicated
project, as it makes managers prone to the ‘cry wolf’ effect (see Oboni
and Oboni (2012)). To give an example, taking into account the union
of events P and ̂I (Fig. 3a) will allocate both a meteorite able to destroy
the whole project ( ≃I 1), and a small puddle frequently found in a
construction site ( ≃P 1) the highest RF, i.e. ≃RF 1, although quite
negligible is P in the former and I in the latter. A high level of judgment
by both the analyzer and observer is hence required to prevent irra-
tional risks from piling up in the priority list, nevertheless, it should be
acknowledged that this approach cautiously avoids any possibility of
ignoring important risks.

3.4. Involving a third factor

Among the motivations for this research is the fact that a ‘time

Fig. 2. (a) The intersection of two sets, (b) Basic events connected via ‘and gate’. Fig. 3. (a) The union of two sets, (b) Basic events connected via ‘or gate’.
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factor’ (T) incorporated in a risk scoring system seemed very strange to
the first author when he was invited to assess the risk management
process of a major hospital construction. The introduced RF defined as

× ×P I T was to decrease as the time available to manage the risk in-
creased. For example, the output of ×P I was suggested to be multi-
plied by =T 0.4 if the predicted risk event was not expected to occur in
the next 12 months, and by =T 1.0 if likely to occur in 3 months.

It is certainly true, in some circumstances, that a risk expected
sooner appeals more primarily to managers, but, final phases of projects
are sometimes prone to major risks that must be treated at the begin-
ning, and it is too risky to postpone the actions required to manage
them simply because they are not urgent at the time of assessment. In
other words, a project team cannot be presumed able to respond to
every risk in a timely and effective manner upon being alerted.
Nevertheless, involving a third factor may be meaningful. In practice,
other aspects such as detectability presented in the following section
are found to be of more importance than time.

3.4.1. The RPN used in FMEA
Many reliability studies employ Failure Modes and Effects Analysis

(FMEA) to identify, assess, and provide solutions to possible problems
in a system, as well as details about their causes and effects, and a Risk
Prioritization Number (RPN) commonly defined as = × ×RPN P D I , in
which D denotes the probability that a failure mode remains undetected
during normal operations or tests, in a way that the higher the prob-
ability of detection, the lower D and thus the lower RPN.

The questionable selectivity of the product formula (Section 3.2) is
here increased as only those failure modes that are high or large enough
in all three parameters will be flagged as important, and remediable
risks are filtered out. In addition to the previously mentioned criticisms
of multiplying the involving parameters (Section 2), a few disputes can
be found about the efficacy of a ‘detectability factor’ considered ex-
clusively. Zhao et al. (2013), for example, deem it embeddable in the
cost (impact) factor, and replace D with other parameters in their work.
Bowles (2003) states that expert opinions concerning the ‘detectability’
can be highly subjective, the name is misleading, and it is not reason-
able to lower the priority of detectable risks, especially when it makes
people think they can fix detectable design flaws later.

Furthermore, while FMEA’s RPN works fine in process and manu-
facturing industries, where the whole production line can be stopped to
capture a faulty product or deviation before it is too late, it is not always
enough in the construction industry to know that something wrong is
going on. Enormous, unpreventable risks-whether detectable or un-
detectable-will undoubtedly have important consequences. The risk of a
dam overtopping, for example, was before the 1960s believed to be
effectively controllable by lowering the water level to some ten feet
below the dam crest, but when the accelerated movements of the Vajont
Dam’s right bank warned of an imminent landslide, no one was able to
prevent it from pushing billions of gallons of water over the dam
(Kilburn and Petley, 2003; Mantovani and Vita-Finzi, 2003). This third
factor ‘D’, together with the one discussed in the previous section (T),
can be in the general form coupled with another factor ‘Unprevent-
ability’ presented in the next section to form a more influential factor.

3.4.2. Presuming all controls are in place
New projects are always associated with the fear of failure due to

some potential risk that is probably outside the host organization’s
control. Such issues can be better analyzed if properly brought to light
by a specific risk scoring system. Azadeh-Fard et al. (2015) suggest
multiplying the calculated score by a new parameter Unpreventability
(U) to obtain a Residual RF (RRF), which is increased up to 50% if the
perceived risk is definitely unpreventable, or decreased up to 50% if it
can be simply prevented by available measures. Mathematically
speaking, = × ×RRF P I U , in which U is a real number between 0.5
and 1.5. One can regenerate the formula as = × ×RRF P I U3

2 to

normalize the results to the range [0,1], or define U on a zero to one
scale, i.e. 0.0 for risks that can be prevented ‘totally’, 0.5 for ‘partially’
and 1.0 for ‘by no means’. Involving such a factor however cannot be
routinely recommended, especially when the risk prioritization process
is to direct the focus of risk treatment activities, as it can result in a
number of preventable, but mistakenly not prevented risks damaging
the organization’s reputation.

3.5. Risk prioritization and then what?

The prioritization process is usually associated with an Acceptable
Risk Level (ARL) measured in the same scale as RF. All identified risks
assigned with an RF greater than ARL are considered so intolerable that
they must be treated. For example, an ARL of ten or fifteen percent of
the maximum value of RF can be suitable (Müller et al., 2006), that is,
when risks are scored from 0 to 1 those with RFs greater than 0.15 will
be planned to be dealt with, while those with lower RFs are assumed
safe to be tolerated.

ARL is not an inherently satisfactory or ideal level, but the lowest
possible level less than which seems to be unachievable (Derby and
Keeney, 1981), and there is no scientific basis to generally prescribe a
specific ARL (Ale et al., 2015). Furthermore, it is not always clear
whether RF is to be reduced by altering P or I (Dissimilarity/Under-
standability, see Sections 2.1 and 2.2). Williams (1996) finds risk
rankings unreliable and recommends considering both P and I of all
risks at all times. Bowles (2003) describes the whole process of calcu-
lating RFs, comparing them with a subjective ARL, and trying to cut
down higher RFs as an ‘unproductive numbers game’, from which no
clue can be obtained as to how the risks should be managed.

Some authors argue that, therefore, risks should be ranked in a way
that rationalizes the subsequent treatment activities, which can be
measured based on their efficiency in terms of the loss they reduce
divided by the resources they consume (Cox, 2009; Mackenzie, 2014; Ni
et al., 2010). The justification equation suggested by Fine (1971), for
example, takes into account the whole formation path of information
about an event to resource allocation decisions. He first defines RF as
the product of P, I, and a third parameter Exposure (Ex), then expands
the approach by introducing a Justification factor (J) to consider a re-
sponsive action more justifiable if it costs less and corrects more. It is
defined as = × ×

×
P I Ex
CF DC , in which CF stands for the Cost Factor and DC for

the Degree of Correction. Risk treatment options must then have small
denominators to be selected.

However, this approach to justification is indeed a poor pretext to
abandon contingency plans especially when it comes to safety, or the
viability of an organization is at stake. To address this problem, Fine
(1971) also suggests that an exception should be made for what he calls
“highly hazardous situations”.

Optimization techniques are also advocated (by Cox (2009) for ex-
ample) to obtain more effective risk action plans. Risks threatening a
complex system are often likely to have arisen from correlated or shared
origins, thus selecting an optimized portfolio of actions will result in
better outcomes. Seyed-Hosseini et al. (2006), for example, propose an
algorithm to improve FMEA by considering all direct and indirect re-
lationships between possible failure modes, and rank the more influ-
encing failures higher than those influenced by the superior ones.

Although the selection of an optimized treatment portfolio is a must,
it should be noted that risk treatment planning is not always the only
purpose of risk prioritization. Moreover, a planning approach focusing
on those treatment alternatives that should necessarily tackle multiple
risks will fail to look after isolated but possibly enormous risks.

3.6. Focusing on orders of magnitude

Apart from the elements involved in the expressions cited above,
possible approaches to their combination are basically those introduced
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in Sections 3.1–3.3, i.e. the average formula, the product formula, and
the union-like formula. Yet, variants of the product formula are found
in the literature overcoming (or at least claiming to have overcome) the
limitations previously enumerated. The two commonly proposed im-
provements are raising elements to higher powers, which is described in
the next section, and taking the logarithm of the product, described
here.

Long-range parameters are often recommended to be expressed on a
logarithmic scale, where small quantities cannot be ignored in favor of
larger ones, and values at both ends of the spectrum are of interest. The
energy an earthquake with a magnitude of 8 releases is one thousand
times that of one with a magnitude of 5, though they are both con-
sidered significant. Instances of probabilities and impacts can be found
in the literature categorized in logarithmically spaced groups, such as
one, ten, one hundred, and one thousand fatalities resulting from a
disastrous event. Instead of dealing with increments of quantities in
such circumstances, a logarithmic scale can represent their differences
in orders of magnitude. A lethality index can then be expressed, re-
spectively, as zero, one, two, and three in this example.

While using a logarithmic scale is essential when data are basically
logarithmic (distributed exponentially) (Duijm, 2015; Gilchrist, 1996),
care should be taken when no such indication is given. Fig.4a shows
how the outputs of a logarithmic function cluster around the maximum
value when the inputs are equally spaced in the domain, which means
that, in the context of risk scoring, almost all the risks will be allocated
high RFs with a low separability, leading again to the ‘cry wolf’ effect.
Fig.4b in contrast shows how well the outputs will be distributed when
the inputs are spaced exponentially.

It is sometimes said that all the concerns addressed in Sections
2.1–2.6 are fully satisfied by simply taking the logarithm of RF. It is
often stated that, for example, this transformation produces gapless
results, a reasonable sensitivity to changes in the sub-factors, and an
easily implementable and interpretable representation of RF because
the logarithm of a product formula can be written as a simple sum-
mation (Braband, 2004; Groso et al., 2012; Müller et al., 2006;
Ouédraogo et al., 2011a). However, as discussed earlier, gaps are not
reduced but moved to the other end of the range, sensitivity to changes
can be quite unfavorable when the inputs are not basically logarithmic
(see Fig. 4a), and it is hard to accept that the combination of a loga-
rithm and a summation is easier to calculate than a single multi-
plication. Furthermore, the results of a logarithmic transformation can
be difficult to understand, as people may misinterpret the results as a
basically linear set of data, and assume similar distances between the
obtained numbers, while it is not so (Mackenzie, 2014).

Base-10 logarithms are frequently used because they are

approximately related to the number of digits or decimals of the input.
Nevertheless, Ouédraogo et al. (2011a) suggest that the bases can be
reduced to 10 , i.e. = ×RF P Ilog [ ]10 , presumably to increase the
value of outputs, and alternatively, they can be set flexibly to reflect
different weights of the involving parameters, i.e.

= +RF P Ilog [ ] log [ ]b b1 2 , in a way that the greater the weight, the
smaller the base. In addition to the cumbersomeness of these mod-
ifications, the desired improvements can be easily obtained, instead of
considering strange bases, by setting appropriate coefficients in the

equation, because P(log [ ])b1 is equal to ( )Plog[ ]b
1

log 1 or c P( 1·log[ ]),
which has the same effect as raising P to an exponent c1 discussed in
Section 3.7.

Finally, it should be noted that logarithmic scales have one notable
advantage, that is, they convert hyperbolic iso-risk contours to straight
lines, and one serious disadvantage, that is, they can never accom-
modate zero probabilities or impacts (Levine, 2012). Moreover, while
the logarithm has a domain of +∞(0, ), its codomain is defined as
−∞ +∞( , ), which means that some hazards may be allocated negative
RFs. When P and I are normalized to the range (0,1], RF will fall in the
range −∞( ,0], and one can define it as = + ×RF P I1 log[ ]1

2 to map the
results to the range −∞( ,1]

3.7. Rethinking the balance between P and I

When forming a formula, numbers raised to a higher power are
normally supposed to be of more importance or, alternatively, the result
is more sensitive to them. Since a most serious shortcoming of the
product formula ( = ×RF P I) is the fact that unexpected catastrophes
are not properly distinguished (see Sections 2.1 and 3.1), the formula
can be so tuned that large I risks are assigned a high RF, even though
they might have a low P. The goal is, so to speak, to increase RF when P
is low and I is large (see Fig. 5a).

Authors such as Okrent et al. (1981), Zio (2007), and Duijm (2015)
mention that the parameter I can be raised to a power greater than one
so that risks with larger I are assigned higher RFs. This modification,
which is believed to ensure ‘major risk aversion’, however, does not
show such an effect, which is better understood when the parameters
are compared to their maximum possible value, or normalized and
brought into the range [0,1].

Raising a number which is less than 1 to a greater power decreases
the result rather than increasing it, and to be more precise, raising I to a
greater power not only does not improve RF for highly destructive
events, but even severely reduces it when I is medium or relatively
small. Fig.5b shows that the shape of RF remains intact at the ‘low P
large I’ region of interest, after increasing the exponent of I, confirming
the uselessness of raising I to a power greater than 1. Instead, com-
paring Fig. 5c–a reveals that the desired result will be obtained by
‘reducing the exponent of P’, as it shapes a ‘horizontal parabola’ on the
plane ‘I = 1’, providing greater values for RF when P is low and I is
large.

Table 1 shows the general pattern of how the result will be affected
by changing the exponents of P and I. The seventh row of Table 1 shows
that incidents with large I and low P will be granted greater RFs when
the exponent of P is slightly decreased. For demonstration purposes,
reducing the exponent of P to 0.5, i.e. = ×RF P I0.5 works properly to
distinguish such incidents, but to examine an exact optimal value is
beyond the scope of this research

Moreover, to have a formula with effectively tuned exponents, one
can alternatively think of a weighted geometric mean, which always
keeps the sum of all exponents equal to one. Therefore, the original
form of a geometric mean of two numbers is ×P I , and their weighted
geometric mean will be ++ P Ia ba b , in which a and b are the tuned
exponents of P and I. For example, ×P I34 displays an extreme case of
risk aversion, which is of course the other form of ×P I0.25 0.75Fig. 4. The logarithm function mapping from (a) linearly and (b) exponentially spaced

natural numbers to (a) logarithmically and (b) linearly spaced real numbers.
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4. A new approach to providing multifaceted information

Unknown phenomena are often analogized to an elephant being
examined by blind people (or people in the dark), each of whom
characterizes and describes the creature in a somewhat different way
based on their limited individual perception (see Rayner (1987) and
Ramasesh and Browning (2014), for example). Zimmermann (2000)
states that while no unique, general definition of uncertainty is found in
the literature, some have been claimed to be the only consistent one.
According to Samson et al. (2009), almost all definitions of risk and
uncertainty are introduced in response to a newly emerged problem, i.e.
they are ‘problem specific’ rather than generic. Yet, regardless of the
possibility of providing a generalized definition, it is good practice for
construction managers to define problem specific RFs considering the
phenomena being analyzed, involving variables, and outcomes of in-
terest.

Managers are often seen, for example, to be so aware of high
probability issues that they do consider appropriate measures addres-
sing such issues as part of their normal planning. To give an instance,
designers following a seismic code in a high seismicity region routinely
behave responsibly toward the damage resulting from an earthquake,
with no need to be aware of the background uncertainty. The impact
resulting from frequently occurring events is therefore not the reason
why organizations establish a risk management unit, but the mission of
such a unit is to highlight, and provide solutions for events with more
surprising outcomes.

A few authors like Müller et al. (2006) and Mackenzie (2014) have
suggested that risks can be scored using a multiple-item index, and
comment that failure to address all the items leaves valuable informa-
tion unused. The idea presented in this section is to incorporate the
ratio of the impact and probability of an event into the risk prioritiza-
tion process, so as to measure the ‘surprise content’ of uncertainty as an
auxiliary metric. By dividing I by P, a risk with large I and high P for

which established guidelines are available will be of less surprise than
one with large I but low P. To avoid the common problem of division by
zero that arises when P is almost zero, the inverse trigonometric func-
tion ‘arctangent’ can be used to map the results from +∞[0, ) to the
range ⎡⎣ ⎤⎦0,π

2 . The surprise content is thus defined as = ( )φ Arctan I
P .

When visualizing risk data sets on the Cartesian plane, P is some-
times placed on the horizontal and I on the vertical axis (Ni et al.,
2010), and sometimes vice versa (Ale et al., 2015). Risks are then de-
picted as single points or vectors on the plane (see Fig. 6). As it can be
seen from Fig. 6, φ is the angle subtended by the vector representing a
risk with the dataset p i( , ) and the positive P axis. Given that r is the
‘radial distance’ of the point to the origin, or alternatively the length of
the vector, a new RF can be defined as the complex number ∢r φ, and to
maintain the output in the range [0,1], one can divide the radial distance

by 2 which yields = ∢+ ( )RF ArctanP I I
P2

2 2
.

For example, considering =P 0.8A , =I 0.5A , =P 0.3B , and =I 0.9B

for two arbitrary events A and B, RF will be calculated as
= ∢ °RF 0.67 32A and = ∢ °RF 0.67 72B , respectively. Since complex num-

bers do not support linear ordering, it is not possible to compare the
two events A and B based on their so defined RFs, but deliberate in-
formation can be inferred from this metric. In this example, whereas
both events have an r of 0.67, the larger φ warns against the more
surprising event B rather than the relatively ordinary event A.

Two areas of concern are distinguished in Fig. 6: First, events that
fall into the red zone have both high P and large I, which are usually
called ‘extreme risks’ that might already have enough resources re-
served. On the other hand, events that fall into the dark purple area will
probably cause a surprise when they occur, regardless of their r . A
manager therefore has to take into account both r and φ: the distance r
for estimating the magnitude of risk, and the angle φ for the level of
surprise.

As described in Sections 3.4 and 3.5 there is a clear tendency to
involve factors other than P and I. When three or more factors are

Fig. 5. The three dimensional representation of how RF can be affected by changing the exponents of P and I. (a) The original product formula, indicating the need to increase RF in the
high P small I region. (b) The exponent of I is increased. RF is shaped as a parabola on the plane ‘P = 1.0’. (c) The exponent of P is decreased. RF is shaped as a ‘horizontal parabola’ on the
plane ‘I = 1.0’.

Table 1
The effect of possible modifications to the risk scoring formula.

If Is For example RF will be Especially when Which implies that

The exponent of I Increased Slightly = ×RF P I2 Decreased I is small and P is high Small impact events are inconsiderable, even if they are frequent
Greatly = ×RF P I5 Extremely decreased I is not too large Risk will exist only if impacts are large enough

Decreased Slightly = ×RF P I 0.5 Increased I is small and P is high Frequent events are of high risk, even if their impacts are small
Greatly = ×RF P I 0.2 Increased P is high RF depends only on probabilities, and impacts are ignored

The exponent of P Increased Slightly = ×RF P I2 Decreased I is large and P is low Unlikely events are inconsiderable, even if their impacts are large
Greatly = ×RF P I5 Extremely decreased P is not too high Only those events that are almost certain can be considerable

Decreased Slightly = ×RF P I0.5 Increased I is large and P is low Large impact events are of high risk, even if they are not too frequent
Greatly = ×RF P I0.2 Increased I is large RF depends only on impacts, and probabilities are ignored
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contributing to RF, potential information can be obtained from pairwise
comparisons, a three-dimensional representation of which is illustrated
in Fig. 7. The cube formed by the three coordinate factors X, Y, and Z is
colored based on the length of the vector pointing to a risk in Fig. 7a
(the radial distance formula), on the ratio of the factors Y and X in
Fig. 7b, and Z and X in Fig. 7c, suggesting that risks falling into the red
zone in each representation may require separate treatment programs.

5. Discussion

The quest for a Risk Factor is not a mathematical solution for a
physical quantity; nor is it to provide a best estimation, or even an
abstraction of a real world phenomenon. It should be regarded, instead,
as an endeavor to systematically distinguish between risks that possess
or lack a certain property, or to rank them according to their degree of
possession of that property. No set of RFs can be therefore considered as
a true value the deviation from which explains the weakness of an
approach. They can only be evaluated by observing their attributes and
the extent they fulfill the promised goals.

There are, of course, a number of well-rehearsed scoring approaches
described in Section 3 with no indication of any consistent superiority
of one approach over the others, albeit the literature seemingly insists
on introducing a definite alternative, which indeed has not been agreed
upon yet. Attributes usually pointed out to promote an approach over
another are studied in Section 2. Dissimilarity, understandability and
reasonable sensitivity (Sections 2.1–2.3) refer to the interests of an
observer who uses the RF to make decisions in their uncertain en-
vironment, where the next three appear to be of less importance. Sur-
jectivity, confinement, and monotonicity (Sections 2.4–2.6), in return,
get more attention from the team who analyze the risks. Except for
understandability, these attributes can be mathematically examined,

which is summarized in Table 2.
It is shown that only the last two approaches, i.e., the Tuned ex-

ponents and the Multifaceted approach can produce dissimilar results
for naturally dissimilar risks (Dissimilarity, see Section 2.1), and, only
the average formula responds reasonably to alterations (Reasonable
sensitivity, see Section 2.3). Since the logarithm of a product formula
takes the form of a summation formula, operands in the logarithmic
approach are limited in their influence on each other, thus the sensi-
tivity of the result to a change in one variable is disconnected from the
value of other variables. The multifaceted approach is reasonably sen-
sitive in its magnitude part, but highly sensitive in the argument, be-
cause it involves the quotient of the mutual parameters.

Surjectivity and monotonicity are attributed to all approaches. With
respect to confinement, the results of most of the formulas can be ad-
justed such that they cover only a desired range (see Section 2.5). As
might be expected, taking the logarithm of, or dividing by a parameter
that approaches zero will cause problems, which is reflected in the
fourth and eighth row of Table 2.

Other aspects can also influence the evaluation of an approach. The
amount and quality of the required information, the nature and purpose
of the problem, and whether the results will be observed by a human or
computer must be noticed before committing to an approach (Zeng
et al., 2007; Zimmermann, 2000). Non-human observers should be
provided with more accurate approximations since they make less
flexible judgments, while human observers require better under-
standable information. Furthermore, a risk scoring process should have
a commensurable language when it is to be reviewed by a Peer Review
Group (PRG), and on the other hand, a clear rationale to placate po-
tentially dissatisfied stakeholders with threatened interests. Reliance on
a popular formula -although able to ensure a high level of commen-
surability- cannot vindicate the decision to shelve a low RF risk.

Fig. 8 extends the technical discussions provided in Sections 2 and 3
with a guide to constructing efficient formulas tailored to specific
project needs, which, in summary, points to parameter selection and
preparation, operator selection, and function formation and tuning.

First, considering parameter selection, risk analysis procedures are
not usually realized without parameters P and I, as mentioned in
Section 3.1, unless for special purposes, when, for example, probability
is of little importance, and a specialist provides solutions to a number of
defined problems. Also, manageability parameters discussed in Section
3.4 are sometimes useful to highlight those situations that cannot be
predicted, or even if predicted there is no time to address, or if pre-
dicted timely, they still cannot be prevented. All chosen parameters
must therefore be defined clearly, with an explanation as to why they
are involved in the process.

Parameters must then be prepared. Here it should be noted that the
logarithmic transformation is not necessarily applied to the whole
function (i.e. = × = +RF P I P Ilog log( ) log log ), but rather it can be

Fig. 6. The 2D visualization of risks in the Cartesian plane.

Fig. 7. The 3D visualization of risks in the Cartesian cube.
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used to better present every single parameter that is measured in a
logarithmic scale. For example, if the probability statistics are ex-
ponentially spaced, while the impact is linearly spaced, it can be ad-
visable to only take the logarithm of the former and keep the latter as it
is (e.g. = ×RF P Ilog( ) ).

A clear definition of all parameters, achieved at the top right of
Fig. 8, facilitates better choices at the bottom left of the chart, where the
formula is to be formed. When the summation operator is used (for
example in the average formula described in Section 3.1), each operand
can increase or decrease the result within a range with a constant
length. For example, when RF is defined as +P I

2
, each parameter has a

definite share of 50%, apart from the value of the other one. On the
contrary, each of the multiplicands in the product formula can alter the
product of all other parameters from 0 to 100%. In other words, they
can wipe out the effect of the others, reduce it, or leave it intact. For
example, with a P of 0.9 and I of 0.95 out of 1.0, a third parameter D
can cut the result of × ×P I D down to 0, or maintain it at 0.85.

Depending on the nature of the problem, any of the four formulas
(average, union-like, product or quotient, and radial distance) can be
selected, no matter if the involving parameters are measured logarith-
mically or linearly. The only condition is that all the operands in the
Union-Like formula must be confined to the range [0,1].

Fig. 8. A procedure to suggest the construction process of a risk factor.

Table 2
Observed properties of interest in different approaches to risk scoring.

Approach Ref. section Original form Rangea Rangeb Supports
dissimilarity

Reasonably
Sensitive

Surjective Confined to
[0,1]

Monotonically
increasing

Summation/
Average

Section 3.1 +P I [2,20] [0,2] No Yes Yes If modified Yes

Multiplication Section 3.2 ×P I [1,100] [0,1] No No Yes Yes Yes
Union-Like Section 3.3 + − ×P I P I Undefined [0,1] No No Yes Yes Yes
3Factors/FMEA Section 3.4 × ×P I D [1,1000] [0,1] No No Yes Yes Yes
Treatment

Efficiency
Section 3.5 ×P I

Cost
[0.1,100] ∞[0, ) No No Yes No Noc

Logarithmic Section 3.6 ×P Ilog[ ] [0,2] −∞( ,0] No Partly Yes No Yes
Tuned Exponents Section 3.7 ×P Ia b +[0,10 ]a b [0,1] Yes No Yes Yes Yes

Multifaceted Section 4 + ∢P I Arctan ( )I
P

2 2 [0,10 2 ]&[0, ]π
2

[0, 2 )&[0, ]π
2

Yes Partly Yes If modified Noc

a Function range when the domain for all parameters is {1, 2, 3, …, 10}.
b Function range when the domain for all parameters is [0,1].
c The function is still either monotonically increasing or monotically decreasing in each parameter.
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The fourth (radial distance formula) selection box at the bottom of
Fig. 8 refers to the magnitude part of the Multifaceted approach pre-
sented for the first time in this paper (see Section 4). Defining the
magnitude of the RF as a radial distance gives the opportunity of con-
sidering each parameter as a new direction in that the situation can
move away from a no-risk safe zone, which is placed at the center of the
coordinate system. Thus, when two parameters are considered, one
moves the point horizontally and the other vertically (Fig. 6), and the
radial distance between the risk event and the safe zone is calculated as

+P I2 2 , as an example. When there are n parameters involved in the

formula, the formula will be written as + + … +X X X
n

n1
2

2
2 2

, after being
normalized.

Those formulas that calculate the quotient of two parameters, can
then be modified to avoid returning infinity, as it is suggested in the
argument part of the Multifaceted approach, φ or θ, using the arctan-
gent transform. This modification is consistent with the assumption of
an n-dimensional coordinate system for a risk scoring system that in-
volves n parameters, where the arguments represent the deviation from
the axes, and convey information about latent contents of uncertainty
(see Section 4).

Functions can also be so tuned by applying coefficients and ex-
ponents that the desired attributes are met (see Sections 2.5 and 3.7).
Coefficients are usually used to map the results onto a desired range,
meanwhile they are useful in tuning a formula that uses the summation
operator, in a way quite similar to the way that exponents tune a
multiplication formula: They both have to be greater for more im-
portant parameters. Exponents greater than one, however, will not
behave as expected, as it is shown in Fig. 5. They should all be set lower
than one, and the more important a parameter, the closer its exponent
to one.

This procedure -explained in a general way by reference to the de-
tailed arguments provided in previous sections-can be repeated as many
times as required to provide construction managers with a multifaceted
Risk Factor addressing their different needs.

6. Case examples

6.1. Example 1: caring more about impact

The need to distinguish between high Probability and large Impact
risks is described in Section 2.1 (Dissimilarity). In this regard, Section
3.7 provides insight into how this can be achieved by better tuning
exponents of operands. This example takes into account four cases of
the risk of fall from elevation as exemplified in Fig. 9. In the Case A, a
worker is standing at a point with low probability of fall, but prone to
receive serious injuries if s/he falls from that elevation. In the Case B, a
worker stands at an edge with both high Probability and large Impact,
in the Case C at a point with high P but small I, and in the Case D at a
point with both low P and small I.

The conventional formula ( ×P I ) assigns nearly similar RFs to the
Cases A and C. However, although the risk at the Case C should not be
ignored, it is necessary to notify managers of the hazard existing at the
Case A more than that of the one at the Case C.

As described in Section 3.7, a few previous works have suggested
that the exponent of the parameter of more importance should be in-
creased. This research however suggests that this exponent does not
exceed 1.0, and in return, recommends that the exponents of less im-
portant parameters are reduced. The result of applying these modified
formulas on the risk of fall at the Cases A, B, C, and D is summarized in
Table 3. For simplicity, the values of P and I for all cases are assumed to
be 0.9 when they are ‘high’ or ‘large’, and 0.2 when ‘low’ or ‘small’.
These assumptions do not retract from the generality of the concept.

As a reminder, the aim is to increase the RF assigned to the Case A,
which is only observed in the last column of Table 3.

Moreover, the purpose of differentiating between high Probability

and large Impact risks is to better highlight large Impact risks, but not
by marginalizing high Probability risks. Fig. 10 demonstrates the RFs
calculated in the columns 5 to 7 of Table 3 on a vertical axis. As it can
be seen in Fig. 10a, RF A( ) and RF C( ) are both 0.18. Fig. 10b shows how
raising I to a power greater than 1.0 can distinguish between the Cases
A and C by marginalizing the ‘high P small I’ Case C, which is not de-
sired. On the contrary, decreasing the exponent of P eshown in
Fig. 10c-better highlights the ‘large I low P’ Case A, while the RF for
Case C is almost maintained at its original value.

This correction will be particularly important when risks are vi-
sualized by colors, or when an Acceptable Risk Level (ARL) is defined
as a measure to detect whether a risk is to be tolerated or treated. For
example, if ARL was defined as 0.3, only the correction suggested by
this research would bring the Case A above ARL.

6.2. Example 2: Parameters that diversely influence the result

This example further illustrates the concept behind the selection box
located at the bottom left of Fig. 8.

In this example, rather than formulating a Risk Factor, a new
parameter -Manageability (M)- is constructed from the combination of
the three parameters described in Section 3.4, i.e., Detectability (D),
Time (T), and Unpreventability (U).

Theoretically speaking, a risk will be manageable if it is both de-
tectable and preventable, and there is enough time before it happens.

These three parameters cannot be averaged, because they are not of
the same nature; cannot be multiplied, because they are not conditional
on each other; and cannot be united by the union-like formula, because
losing only one of the three leverages of detectability, preventability,
and time does not make a risk completely unmanageable. Instead, each
of the parameters D, T, and U act in a different direction apart from the
value of the others (see Fig. 11).

Table 4 shows the results of calculating M using different formulas
selectable at the bottom left of Fig. 8, i.e., the average, product, union-
like, and radial distance formulas. In the rows 1 to 4, it can be seen that
the product formula returns zero when even only one of the parameters
is zero, which is not the case in most situations. In contrast, the same
rows show that the union like formula does not distinguish between the
cases in which one or more parameters are equal to 1.0; only one

Fig. 9. (Example 1) Four extreme cases of the risk of fall from elevation.
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parameter of 1.0 guarantees the result of 1.0, i.e., in the union-like
formula, losing only one leverage is equal to losing all leverages. The
radial distance formula, however, returns different results when in-
putted with different parameters provided in rows 1 to 4.

In addition to the above mentioned theoretical shortcoming of the
average formula, the fifth row of Table 4 shows how a single, low
parameter cuts the average of other high parameters, but does not do so
that much with their radial distance to the origin, that is, if D and U are
0.9 and 0.8, a T of 0.0 results in a moderate M of 0.57 in the average
formula, and a high M of 0.70 in the radial distance formula. In other
words, the radial distance formula does not show much sensitivity
when a single parameter is considerably less than the others, i.e., the
radial distance formula better treats an isolated number than the
average formula.

6.3. Example 3: avoiding an irregular distribution of hazards

The following example describes how helpful the new multifaceted
approach to risk scoring can be in promoting the concept of Design for
Safety.

In a study conducted to assess occupational hazards perceived in a
construction site, a fall risk index was defined for each point of a given
working area, in the simplest form of which higher indices would be
obtained when a point was surrounded by more void areas such as
dangerous openings and edges. Probability and Impact could be thus
linked to the distance from void areas and their relevant fall height.

Fig. 12 shows an elevated platform with unprotected edges. In the
case that a worker loses his/her balance at an arbitrary point W, the
probability that this worker falls from point E1 is negatively related to
the distance between E1 and W. If the accident occurs, the impact will
be positively related to the height of the fall.

Similar reasoning can be made to calculate the risk of falling from
other adjacent edges such as points E2 and E3, and a total RF or ‘fall risk
index’ can be assigned to the point W by summing them up.

The procedure to calculate this fall risk index can be simplified as
follows:

1. Select the platform which is to be analyzed.
2. Choose the mesh size, ‘m’. Meshing is necessary to limit the number

of calculations to a bounded value. A mesh size of 0.10 m will be
satisfactory for normal purposes.

3. Choose the effective distance, ‘d’, which shows the horizontal dis-
tance a worker might travel after losing his/her balance before
hitting the ground. This is again necessary to limit the number of
calculations. A distance of 2.0 m is assumed to be enough when
external factors such as slope are not involved.

4. Determine the size of the analysis matrices. First, calculate n from
=n d m/ . The analysis matrices will be square matrices of size

+n2 1.
5. Define the function ‘ impact x y( , ) ’ returning a number between 0.0

and 1.0, which represents the impact of fall from a point with co-
ordinates x y( , ) on or around the platform.. In general, impact x y( , ) is
a function of the height of fall, the rigidity and sharpness of the
ground, the existence of water, etc. Nevertheless, if the height of fall
is constant for all of the edges, this function can be simplified as a

Table 3
(Example 1) Comparing the effect of different approaches to tuning the exponents of involving parameters (see Fig. 10 for a visual demonstration).

(1) (2) (3) (4) (5) (6) (7)
Case The potential accident is P I ×P I (Conventional method) ×P I2 (Suggested by the literature) ×P I0.5 (Suggested in this research)

A Not so probable, with large impact 0.2 0.9 0.18 0.16 0.40
B Highly probable, with large impact 0.9 0.9 0.81 0.73 0.85
C Highly probable, with small impact 0.9 0.2 0.18 0.04 0.19
D Not so probable, with small impact 0.2 0.2 0.04 0.01 0.09

Fig. 10. (Example 1) Demonstration of RF for the Cases A, B, C, and D
on a vertical axis calculated by (a) the conventional formula, (b) the
recommended formula in the literature, and (c) the formula suggested
in this research (see Table 3 for numerical details).

Fig. 11. (Example 2) Each parameter moves a risk event away from the manageable zone
in a different direction.
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piecewise function with two domains:

= ⎧
⎨⎩

Impact x y
if the point x y is on avoid area
if it is on the plat form

( , )
1.0 ( , )
0.0

.

6. Form the square matrix P of size +n2 1 with the elements de-
scribing the probability that a worker falls from the point corre-
sponding to Pi j, if this worker loses his/her balance at the point
corresponding to the element at the center of the matrix (i.e. the
element + +n n1, 1 of the + × +n n(2 1) (2 1) matrix). In the ab-
sence of further information, P can be defined using a normal
Probability Density Function (PDF) as = − × − − + − −Pi j

m i n j n
,

(( 1) ( 1) )2 2 2
e .1

7. Obtain the coordinates of the point for which the fall risk index is to
be calculated.

8. Form the square matrix I x y( , ) of size +n2 1 for the considered
point with elements defined as =I x y( , )i j,

+ × − − + × − −impact x m i n y m j n( ( 1), ( 1)).
9. Form the square matrix R x y( , ) of size +n2 1 for the considered

point with elements defined as = ×R x y P I x y( , ) ( , )i j i j i j, , , .
10. Calculate the Fall Risk Index (FRI) at the considered point as:

= ∑ ∑=
+

=
+FRI x y R x y( , ) ( , )i

n
j
n

i j1
2 1

1
2 1

,

• Resume the analysis by repeating the steps from step 6 to obtain an
FRI for every point of the platform.

• Visualize the results of FRI using an orange-red spectrum.

As a practical example, Fig. 13 shows an electrical room with sev-
eral unprotected wells with similar depths labeled by two digit numbers
representing their columns and rows. This electrical room is a

simplified derivation of a room designed for a Lighting and Power
Substation (LPS) in a subway station, to which different units –in-
cluding one other LPS at the opposite side of the station- are usually
connected through channels situated bellow the rails and accessed via a
number of vertical ducts -here referred to as wells. During the con-
struction and procurement phase, workers and specialists are to peri-
odically enter the room to perform various tasks that might include two
persons lifting, handling and installing large objects, and extending or
retracting cables, all of which involve random movements around
specified points.

The above defined fall risk index is visualized in Fig. 14 after per-
forming computer-assisted computations of matrices P, I, and R for
every point within the analysis area. As shown in Fig. 14, one to two
feet wide red and orange rings are specified as high hazard areas
around each well. Looking more closely, one can observe a slight ex-
pansion of high hazard areas where two or more wells are clustered
together, implying the sense that the region around the clustered wells
{31, 32, 41, 42, 51, 52} is of higher risk than around the isolated well
61.

It could be argued, however, that workers are expected to better
perceive the risk existing around the clustered wells and seldom or with
extreme caution proceed to perform mobility related tasks in such
areas. Worker B in Fig. 13, for example, probably takes more care when
passing the orange area between the 2nd and 3rd rows of wells.

An isolated well, in contrast, evokes less fear and makes a worker
think s/he can perform mobility related tasks in its vicinity without any
threat of falling into a well. This relief of stress can sometimes lead to
reckless behavior. For example, the workers A and D in Fig. 13 might
perceive less risk (from isolated wells 23 and 64) than what the worker
C perceives (from the wells 51 and 52 at the left and 61 at the right),
and thus, will be probably surprised on confronting the risk of fall into
the wells 23 or 64 (see Fig. 15).

As described in Section 4, the surprise content of such an un-
certainty is suggested to be determined from the ratio between I and P.
In this example, this ratio is simplified by calculating the quotient of the
largest impact and the number of points having such impact. Therefore,
the multifaceted approach introduced in this paper recommends sup-
plementing the above procedure by the article 11 before resuming to
the final steps:

11. Calculate the Risk Surprise Content (RSC) at the considered point as
=RSC x y( , ) Max I x y

Count Max I x y
( ( , ))

( ( ( , ))) , in which the maximum value of the
matrix I x y( , ) formed at step 8 is divided by the number of its ap-
pearance in that matrix.

And the final steps will be amended as:

• Resume the analysis by repeating the steps from step 6 to obtain an
FRI and an RSC for every point of the platform.

• Visualize the results of FRI using an orange-red spectrum, and the
results of RSC using a magenta-purple spectrum.

Having been computed, the two indices FRI and RSC can be vi-
sualized on the same graph, which is visualized in Fig. 15.

Table 4
(Example 2) Comparison of the results obtained from the four risk scoring formulas introduced in Fig. 8.

Row D U T Average = + +M D U T
3

Product = × ×M D U T Union-like = + + − × − × − × + × ×M D U T D U U T D T D U T
Radial distance = + +M D U T2 2 2

3

1 0 0 0 0.00 0.00 0.00 0.00
2 1 0 0 0.33 0.00 1.00 0.58
3 1 1 0 0.67 0.00 1.00 0.82
4 1 1 1 1.00 1.00 1.00 1.00
5 0.9 0.8 0 0.57 0.00 0.98 0.70

Fig. 12. (Example 3) An unprotected elevated platform. Risk of fall increases both when a
worker (point W) approaches an edge (point E1) and when the fall height increases.

1 This PDF is derived from simplifying the Normal PDF
−

πσ

x μ
σ

1

2 2

( )2

2 2e by setting μ to 0

and σ to 2
2
, and multiplying the whole function by π to remove the coefficients and

achieve a simple form. Here, × − − + − −m i n j n(( 1) ( 1) )2 2 shows the distance between
every point addressed by the matrix elements and the central element.
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Fig. 15 provides two separate aspects of information about potential
fall accidents in the small electrical room. The orange-red spectrum,
although sometimes obvious, helps people distinguish high hazard
zones, and the magenta-purple spectrum is necessary to acquaint them
with the zones where a worker might be in danger while feeling safe.

This practical example is perhaps not inclusive in that it does not
address all aspects of fall from elevation and risk perception, but, can
emphasize the need for avoiding the placement of high hazards in ap-
parently safe areas at the design phase.

7. Conclusion

The difference between risk scoring formulas is not limited to their
attributes; it is rather about how they approach the uncertainty con-
cealed in surrounding events. Constituting elements represent the di-
mensions perceived as important, and the structure reflects the channel
through which uncertain events are believed to affect the objectives of a
project.

The three major structures available in the literature, i.e. the
average, product, and union-like formula, are completed by the radial
distance formula suggested in this paper, while the modifications to
these formulas are extended by better tuning of exponents and using
new transformations. The radial distance formula, together with the
arctangent of the quotient of mutual parameters, is introduced as a new
multifaceted risk scoring approach providing the observer with custo-
mized contents of uncertainty.

Obtained from different combinations of elements, structures, and
modifications, more than ten available forms of scoring formulas have
been reviewed in this research with regard to a set of criteria, which are
in turn supported by mathematical arguments that unmask fallacious
reasoning sometimes used to criticize one approach and promote the
other. It is argued that while, in certain situations, some combinations
fail -or need some modifications- to produce satisfactory results, there is
no unique prescription how to view every possible risk in the con-
struction industry. A solid mathematical foundation, however, makes it
possible to embrace a framework offering the proper form of an

Fig. 13. (Example 3) Plan of the electrical room analyzed against the risk of
fall from elevation.

Fig. 14. (Example 3) High hazard areas in the electrical
room.

Fig. 15. (Example 3) A multifaceted visualization of risks perceived in the electrical room.

H. Malekitabar et al. Safety Science 101 (2018) 72–85

84



equation that satisfies given conditions, which is provided in Section 5.
Guidelines on how to select the most relevant elements, useful

scales and output ranges, acceptable risk levels, and appropriate ex-
ponents and coefficients require separate conceptualizations, which
should be developed in future studies.
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